CDA数据分析师 出品  

作者:泽龙、Mika

数据:真达  

后期:泽龙

 

【导读】

北京时间7月20日,这个赛季的西甲联赛正式结束,最受关注的“全村的希望”武磊和他的西班牙人队彻底告别西甲。

 

今天我们就用数据来聊一聊武磊。Python技术部分请直接看第二部分公众号后台,回复关键字“0721代码”获取完整数据。

Show me data,用数据说话

今天我们聊一聊 武磊

点击下方视频,先睹为快:

点击观看

最近,中国足球又成为了社会的焦点话题,12分钟跑、体能、成绩成了社会人士和专业人士互怼的话题,外行怼内行基本功都不行,还玩啥,内行怼外行足球是综合运动,你不懂。真的是热闹非凡,可能足球真的只分为内行和外行,完全不关心的人很少,是个看球的人都可以说自己懂足球,真是现实唯唯诺诺,网络重拳出击。

 

回到本期的主人公,中国足球第一人武磊,武球王,下赛季,武磊的去向一直占据的体育板块的头版头条,几家有中国背景的球队都想得到武磊,商业价值的确无可比拟,看看爱奇艺西甲的收视率,武磊登场的比赛和不登场的比赛相差70%,西班牙人整体收视率可以和英超媲美了,这就是商业价值,西班牙人虽然降级,但是乐动体育可是知名度节节攀升,这笔投资性价比还是很高的。

 

我们抽取了皇家西班牙人足球俱乐部在18/19 19/20 2个赛季的全部比赛数据,做了可视化分析,下面我们就来对应数据,解读下武磊的表现。

本文主要从这几个角度展开

 

  • 武磊生涯评分

  • 武磊身价浮动数据

  • 武磊欧洲进球曲线图

  • 西班牙人进攻效率对比

  • 数据分析过程

 

01数据解读武磊

 

我们先来看看武磊职业生涯中的各项数据分析:

 

武磊近年生涯回顾 

 

看到武磊的生涯评分,从16年到20年,虽然成下降趋势,但是西甲的强度和中超的强度本身是2个世界,所以说下降也是情理之中,毕竟对手和队友都不一样,在西甲的1.5个赛季,武磊算是高开低走,但是西班牙人更是出现断崖式的下滑,所以要是对比武磊和西班牙人的下滑曲线,C君觉得这个赛季西班牙人真的配不上武磊。

 

武磊身价达到1000万欧元

 

看了生涯走势,再看下身价走势。

武磊小时候的愿望,我要值1000万—真的实现了,西甲中下游球队的主力前锋值1000万也算是公平公正了,虽然进球数有点刺眼,但是创造机会能力强。最近武磊身价下降了200万,主要是因为西班牙人本赛季真的不给力,下赛季假如武磊可以登陆英超,估计身价可以更高。

 

武磊欧洲进球曲线图

 

为了更直观的感受武磊的进球效率,我们统计了武磊正式比赛的进球数,做了折线图。

直观感受是进球效率的确不高,但西班牙人的进攻效率更是低下,基本每场比赛射门更是寥寥无几。只能说武磊不是强力中锋,没有能力一个人左右锋线,他更加舒服的位置是踢二中锋,跑位、射门,而不是护球、盘带、过人、传球。

 

西班牙人进攻效率对比

 

其实也不能完全怪武磊的进攻效率,看看西班牙人的本赛季的进球数,也是惨绝人寰,而且这个不光是西甲,还加入了欧联杯的比赛,要是只看西甲,可以说西班牙人不降级都说不过去,场均也就1个球,再加上后卫线最强的是主力门将,防守常年出问题,可以说西班牙人配的上一个降级名额。 

 

西班牙人队得分走势(2018.8.19-2019.5.18)

 

西班牙人队得分走势(2019.7.27-至今

 

我们对比了上赛季的西班牙人,可以明显看出上赛季的西班牙人进攻好很多,可以达到场均2个球,而且稳定,后防线和本赛季相差不多,但是1个球就可以决定胜负,3分和0分的差距是巨大的。 

 

说到防守,大家可能印象中防守弱的球队都不够凶狠,就是平时说的踢球比较干净,我们统计了犯规走势图,其实大体上看,和西甲平均值相差无几,西甲本身就不是强调身体的联赛。实际看来,西班牙人的丢球主要源于漏人和被人打反击。西班牙人和巴塞罗那同属一个地区,其实踢球的风格也相差无几。在球员能力严重不足的情况下去打全攻全守的足球,去打传控足球无异于自杀,中场丢球被人打反击就是本赛季西班牙人的写照。

西班牙人的降级真的是防守问题大于进攻问题,防守才是定位于小球会的球队立足之本。武磊的确浪费了不少机会,但每场触球都是个位数,也是挺难为武磊的,大家都在说孙兴慜厉害,但是孙兴慜浪费的机会、拿球的机会都要比武磊多很多,只能说他赢得了信任,拿球机会多了,形成了正向循环,武磊还没有真正赢得五大联 赛的最重。

 

02数据分析步骤

 

我们使用Python获取了球探体育网站上西班牙人的球队数据,地址:

http://zq.win007.com/cn/team/Summary/100.html

以下展示部分分析代码:

 

首先导入所需包,其中pandas用于数据读入和数据整理,pyecharts用于数据可视化分析。

import pandas as pd 

from pyecharts.charts import Bar, Pie, Line, Page
from pyecharts import options as opts 

 

数据读入

1

该数据包含了西班牙人球队2013-08-20至2020-07-17日比赛数据,数据预览如下:

# 读入数据
df_4 = pd.read_excel('../data/球探体育比赛数据.xlsx')

# 提取日期
df_4['日期'] = df_4['时间'].str.split(' ').str[0]
df_4.head() 

 

数据预处理

2

去掉友谊赛的数据并按照日期进行升序排序。

# 去掉友谊赛
df_4 = df_4[df_4['比赛']!='球会友谊']

# 排序
df_4 = df_4.sort_values('日期')
df_4.shape

 

数据可视化

3

3.1 赛季 2019-07-26 - 今 西班牙得分走势图

# 筛选时间df_sel2 = df_4[(df_4['日期'] >= '2019-07-26')]
df_sel2.head() 

# 提西班牙人 主队比分
zhudui = df_sel2[df_sel2['主队']=='西班牙人'][['日期', '比分']]
# 分数
zhudui['分数'] = zhudui['比分'].str.split('-').str[0].astype('int')

# 提西班牙人 客队比分
kedui = df_sel2[df_sel2['客队']=='西班牙人'][['日期', '比分']]
# 分数
kedui['分数'] = kedui['比分'].str.split('-').str[1].astype('int')

# 提取日期
riqi = df_sel2[['日期']]

# 合并数据
riqi = pd.merge(riqi, zhudui[['日期', '分数']], on='日期', how='left') 
riqi = pd.merge(riqi, kedui[['日期', '分数']], on='日期', how='left')
riqi.columns = ['日期', '主队分数', '客队分数']

# 填补空值
riqi = riqi.fillna(0)
# 分数相加
riqi['分数'] = riqi['主队分数'] + riqi['客队分数'] 
riqi.head() 

 

# 产生数据
x_data = riqi['日期'].values.tolist()
y_data = riqi['分数'].values.tolist()

# 折线图
line5 = Line(init_opts=opts.InitOpts(width='1350px', height='750px'))
line5.add_xaxis(x_data)
line5.add_yaxis('', y_data,
                label_opts=opts.LabelOpts(is_show=False), 
                markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_="min"),
                                                        opts.MarkPointItem(type_="max"),]),
               )   
line5.set_global_opts(title_opts=opts.TitleOpts(title='西班牙球队得分走势(2019.07.26-至今)'), 
                      xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate='45'),
                                               axisline_opts=opts.AxisLineOpts(is_on_zero=False),
                                              ),
                      yaxis_opts=opts.AxisOpts(max_=10, min_=-1,
                        name="",
                        type_="value",
                        axislabel_opts=opts.LabelOpts(formatter="{value}"),
                        splitline_opts=opts.SplitLineOpts(is_show=False),   
                    )
                     ) 
line5.set_series_opts(linestyle_opts=opts.LineStyleOpts(width=3, color='#4169E1'))
line5.render() 

3.2 赛季 2019-07-26 - 今 西班牙得分分布

# 计算得分
score_num = riqi['分数'].value_counts()

# 产生数据
data_pair = [list(z) for z in zip([str(i) + '分'for i in score_num.index], score_num.values.tolist())]

# 绘制饼图
pie5 = Pie(init_opts=opts.InitOpts(width='1350px', height='750px'))
pie5.add('', data_pair, radius=['35%', '60%'])
pie5.set_global_opts(title_opts=opts.TitleOpts(title='西班牙球队得分分布(2019.07.26-至今)'), 
                     legend_opts=opts.LegendOpts(orient='vertical', pos_top='15%', pos_left='2%'))
pie5.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c} \n占比({d}%)"))
pie5.set_colors(['#EF9050', '#3B7BA9', '#6FB27C', '#FFAF34', '#D8BFD8', '#00BFFF', '#7FFFAA'])
pie5.render()

3.3 赛季 2019-07-26 - 今 西班牙球队犯规 黄牌 红牌

# 筛选时间
df_sel2 = df_4[(df_4['日期'] >= '2019-07-26')]

# 产生数据
x_data = df_sel2['日期'].values.tolist()
y_data1 = df_sel2['犯规'].values.tolist()
y_data2 = df_sel2['黄牌'].values.tolist()
y_data3 = df_sel2['红牌'].values.tolist()

 

# 折线图
line6 = Line(init_opts=opts.InitOpts(width='1350px', height='750px'))
line6.add_xaxis(x_data) 
line6.add_yaxis('犯规', y_data1,
                markpoint_opts=opts.MarkPointOpts(data=[
                    opts.MarkPointItem(type_='max', name='最大值'),
                    opts.MarkPointItem(type_='min', name='最小值')
                ])) 
line6.add_yaxis('黄牌', y_data2,
                markpoint_opts=opts.MarkPointOpts(data=[
                    opts.MarkPointItem(type_='max', name='最大值'),
                    opts.MarkPointItem(type_='min', name='最小值')
                ])) 
line6.add_yaxis('红牌', y_data3,
                markpoint_opts=opts.MarkPointOpts(data=[
                    opts.MarkPointItem(type_='max', name='最大值'),
                    opts.MarkPointItem(type_='min', name='最小值')
                ])) 
line6.set_global_opts(title_opts=opts.TitleOpts(title='西班牙球队犯规-黄牌-红牌走势图(2019.07.26-至今)'), 
                      xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate='45'),
                                               axisline_opts=opts.AxisLineOpts(is_on_zero=False)),
                      yaxis_opts=opts.AxisOpts(max_=30, min_=0,
                        name="",
                        type_="value",
                        axislabel_opts=opts.LabelOpts(formatter="{value}"),
                        splitline_opts=opts.SplitLineOpts(is_show=False),   
                    )
                     ) 
line6.set_series_opts(label_opts=opts.LabelOpts(is_show=False), 
                      linestyle_opts=opts.LineStyleOpts(width=3)  
                     )
line6.render() 

 

结语

 

本赛季,到底是武磊配不上西班牙人,还是西班牙人配不上武磊,这个还是留给大家去评判,可以留言给我们,说出你的观点。

 

如果还想看任何体育相关的数据分析

同样请给我们留言吧

我们立刻安排上!

关注CDA人工智能学院公众号回复关键字“0721代码” 获取详细数据代码