在多元线性回归模型中,自变量的选取方法中向前回归法的特点是什么?
A. 它从完整模型开始,逐步剔除对模型贡献不显著的变量。
B. 它首先将所有变量包含在模型中,然后逐个检验每个变量的显著性。
C. 它从没有任何自变量的模型开始,逐步添加每次增加最多解释力度的变量。
D. 它通过逐步地添加和删除变量来决定哪些变量应该包含在模型中。
参考答案: C
解析:向前回归法的过程是从一个空模型(不包含任何自变量)开始的,逐步添加变量。每一步中,选择增加的变量是那些在给定当前模型中对模型贡献最大(即增加最多解释力度)的变量。选项A描述的是向后回归法,它从包含所有候选变量的模型开始,逐步剔除最不显著的变量。选项B描述的不是一个特定的逐步回归方法,而更像是标准的变量显著性检验过程。选项D描述的是逐步回归法,它结合了向前回归和向后回归的特点,即可以添加也可以删除变量。